Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Immunol Res ; 12(4): 440-452, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38331413

RESUMO

Tumor neoantigens (nAg) represent a promising target for cancer immunotherapy. The identification of nAgs that can generate T-cell responses and have therapeutic activity has been challenging. Here, we sought to unravel the features of nAgs required to induce tumor rejection. We selected clinically validated Great Ape-derived adenoviral vectors (GAd) as a nAg delivery system for differing numbers and combinations of nAgs. We assessed their immunogenicity and efficacy in murine models of low to high disease burden, comparing multi-epitope versus mono-epitope vaccines. We demonstrated that the breadth of immune response is critical for vaccine efficacy and having multiple immunogenic nAgs encoded in a single vaccine improves efficacy. The contribution of each single neoantigen was examined, leading to the identification of 2 nAgs able to induce CD8+ T cell-mediated tumor rejection. They were both active as individual nAgs in a setting of prophylactic vaccination, although to different extents. However, the efficacy of these single nAgs was lost in a setting of therapeutic vaccination in tumor-bearing mice. The presence of CD4+ T-cell help restored the efficacy for only the most expressed of the two nAgs, demonstrating a key role for CD4+ T cells in sustaining CD8+ T-cell responses and the necessity of an efficient recognition of the targeted epitopes on cancer cells by CD8+ T cells for an effective antitumor response. This study provides insight into understanding the determinants of nAgs relevant for effective treatment and highlights features that could contribute to more effective antitumor vaccines. See related Spotlight by Slingluff Jr, p. 382.


Assuntos
Vacinas Anticâncer , Neoplasias , Camundongos , Animais , Carga Tumoral , Linfócitos T CD8-Positivos , Linfócitos T CD4-Positivos , Epitopos , Antígenos de Neoplasias
2.
Front Immunol ; 14: 1156714, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180141

RESUMO

Introduction: Virus vectored genetic vaccines (Vvgv) represent a promising approach for eliciting immune protection against infectious diseases and cancer. However, at variance with classical vaccines to date, no adjuvant has been combined with clinically approved genetic vaccines, possibly due to the detrimental effect of the adjuvant-induced innate response on the expression driven by the genetic vaccine vector. We reasoned that a potential novel approach to develop adjuvants for genetic vaccines would be to "synchronize" in time and space the activity of the adjuvant with that of the vaccine. Methods: To this aim, we generated an Adenovirus vector encoding a murine anti-CTLA-4 monoclonal antibody (Ad-9D9) as a genetic adjuvant for Adenovirus based vaccines. Results: The co-delivery of Ad-9D9 with an Adeno-based COVID-19 vaccine encoding the Spike protein resulted in stronger cellular and humoral immune responses. In contrast, only a modest adjuvant effect was achieved when combining the vaccine with the same anti-CTLA-4 in its proteinaceous form. Importantly, the administration of the adjuvant vector at different sites of the vaccine vector abrogates the immunostimulatory effect. We showed that the adjuvant activity of Ad-α-CTLA-4 is independent from the vaccine antigen as it improved the immune response and efficacy of an Adenovirus based polyepitope vaccine encoding tumor neoantigens. Discussion: Our study demonstrated that the combination of Adenovirus Encoded Adjuvant (AdEnA) with an Adeno-encoded antigen vaccine enhances immune responses to viral and tumor antigens, representing a potent approach to develop more effective genetic vaccines.


Assuntos
Infecções por Adenoviridae , Vacinas contra Adenovirus , COVID-19 , Doenças Transmissíveis , Neoplasias , Camundongos , Animais , Humanos , Adenoviridae/genética , Vacinas contra COVID-19 , Adjuvantes Imunológicos , Adjuvantes Farmacêuticos
3.
J Immunother Cancer ; 11(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37117006

RESUMO

BACKGROUND: Tumor microenvironment (TME) represents a critical hurdle in cancer immunotherapy, given its ability to suppress antitumor immunity. Several efforts are made to overcome this hostile TME with the development of new therapeutic strategies modifying TME to boost antitumor immunity. Among these, cytokine-based approaches have been pursued for their known immunomodulatory effects on different cell populations within the TME. IL-12 is a potent pro-inflammatory cytokine that demonstrates striking immune activation and tumor control but causes severe adverse effects when systemically administered. Thus, local administration is considered a potential strategy to achieve high cytokine concentrations at the tumor site while sparing systemic adverse effects. METHODS: Modified Vaccinia Ankara (MVA) vector is a potent inducer of pro-inflammatory response. Here, we cloned IL-12 into the genome of MVA for intratumoral immunotherapy, combining the immunomodulatory properties of both the vector and the cargo. The antitumor activity of MVA-IL-12 and its effect on TME reprogramming were investigated in preclinical tumor models. RNA sequencing (RNA-Seq) analysis was performed to assess changes in the TME in treated and distal tumors and the effect on the intratumoral T-cell receptor repertoire. RESULTS: Intratumoral injection of MVA-IL-12 resulted in strong antitumor activity with the complete remission of established tumors in multiple murine models, including those resistant to checkpoint inhibitors. The therapeutic activity of MVA-IL-12 was associated with very low levels of circulating cytokine. Effective TME reprogramming was demonstrated on treatment, with the reduction of immunosuppressive M2 macrophages while increasing pro-inflammatory M1, and recruitment of dendritic cells. TME switch from immunosuppressive into immunostimulatory environment allowed for CD8 T cells priming and expansion leading to tumor attack. CONCLUSIONS: Intratumoral administration of MVA-IL-12 turns immunologically 'cold' tumors 'hot' and overcomes resistance to programmed cell death protein-1 blockade.


Assuntos
Interleucina-12 , Neoplasias , Humanos , Camundongos , Animais , Interleucina-12/genética , Interleucina-12/farmacologia , Microambiente Tumoral , Vírus Vaccinia/genética , Citocinas/metabolismo , Neoplasias/patologia
4.
J Immunother Cancer ; 9(11)2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34824160

RESUMO

BACKGROUND: A number of different immune pathways are involved in the effective killing of cancer cells, collectively named as the 'Cancer Immunity Cycle'. Anti-PD-1 checkpoint blockade (CPB) therapy is active on one of these pathways and reinvigorates anticancer T cell immunity, leading to long-term responses in a limited fraction of patients with cancer. We have previously shown that neoantigens-based adenovirus vectored vaccine in combination with anti-PD-1 further expands pre-existing anticancer immunity and elicits novel neoantigen-specific T cells thereby increasing efficacy to 50% of tumor clearance in mice. Here we added a third component to the CPB plus vaccine combination, which is able to modify the suppressive tumor microenvironment by reducing the number of tumor-infiltrating regulatory T cells (Tregs), as strategy for improving the therapeutic efficacy and overcoming resistance. METHODS: The antitumor efficacy of anti-PD-1, neoantigen vaccine and Treg modulating agents, either Bempegaldesleukin (BEMPEG: NKTR-214) or an anti-CTLA-4 mAb with Treg-depleting activity, was investigated in murine tumor models. We evaluated tumor growth in treated animals, neoantigen-specific T cells in tumors, tumor-infiltrating lymphocytes (TILs) and intratumoral Tregs. RESULTS: The addition of BEMPEG or anti-CTLA-4 to the combination of vaccine and anti-PD-1 led to complete eradication of large tumors in nearby 100% of treated animals, in association with expansion and activation of cancer neoantigen-specific T cells and reduction of tumor-infiltrating Tregs. CONCLUSION: These data support the notion that the integrated regulation of three steps of the cancer immunity cycle, including expansion of neoantigen-specific T cells, reversal of the exhausted T cell phenotype together with the reduction of intratumoral Tregs may represent a novel rationally designed drug combination approach to achieve higher cure rates.


Assuntos
Vacinas Anticâncer/imunologia , Expressão Gênica/genética , Imunoterapia/métodos , Receptor de Morte Celular Programada 1/imunologia , Linfócitos T Reguladores/imunologia , Animais , Feminino , Humanos , Camundongos
5.
Vaccines (Basel) ; 9(8)2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34452005

RESUMO

Neoantigens are tumor-specific antigens able to induce T-cell responses, generated by mutations in protein-coding regions of expressed genes. Previous studies demonstrated that only a limited subset of mutations generates neoantigens in microsatellite stable tumors. We developed a method, called VENUS (Vaccine-Encoded Neoantigens Unrestricted Selection), to prioritize mutated peptides with high potential to be neoantigens. Our method assigns to each mutation a weighted score that combines the mutation allelic frequency, the abundance of the transcript coding for the mutation, and the likelihood to bind the patient's class-I major histocompatibility complex alleles. By ranking mutated peptides encoded by mutations detected in nine cancer patients, VENUS was able to select in the top 60 ranked peptides, the 95% of neoantigens experimentally validated including both CD8 and CD4 T cell specificities. VENUS was evaluated in a murine model in the context of vaccination with an adeno vector encoding the top ranked mutations prioritized in the MC38 cell line. Efficacy studies demonstrated anti tumoral activity of the vaccine when used in combination with checkpoint inhibitors. The results obtained highlight the importance of a combined scoring system taking into account multiple features of each tumor mutation to improve the accuracy of neoantigen prediction.

6.
Mol Ther Oncolytics ; 19: 253-264, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33209980

RESUMO

Oncolytic viruses (OVs) are novel anti-tumor agents with the ability to selectively infect and kill tumor cells while sparing normal tissue. Beyond tumor cytolysis, OVs are capable of priming an anti-tumor immune response via lysis and cross-presentation of locally expressed endogenous tumor antigens, acting as an "endovaccine." The effectiveness of OVs, similar to other immunotherapies, can be hampered by an immunosuppressive tumor microenvironment. In this study, we modified a previously generated oncolytic herpes simplex virus (oHSV) retargeted to the human HER2 (hHER2) tumor molecule and encoding murine interleukin-12 (mIL-12), by insertion of a second immunomodulatory molecule, murine granulocyte-macrophage colony-stimulating factor (mGM-CSF), to maximize therapeutic efficacy. We assessed the efficacy of this double-armed virus (R-123) compared to singly expressing GM-CSF and IL-12 oHSVs in tumor-bearing mice. While monotherapies were poorly effective, combination with α-PD1 enhanced the anti-tumor response, with the highest efficacy of 100% response rate achieved by the combination of R-123 and α-PD1. Efficacy was T cell-dependent, and the induced immunity was long lasting and able to reject a second contralateral tumor. Importantly, systemic delivery of R-123 combined with α-PD1 was effective in inhibiting the development of tumor metastasis. As such, this approach could have a significant therapeutic impact paving the way for further development of this platform in cancer immunotherapy.

7.
Sci Rep ; 9(1): 19214, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31844114

RESUMO

Gene delivery using vector or viral-based methods is often limited by technical and safety barriers. A promising alternative that circumvents these shortcomings is the direct delivery of proteins into cells. Here we introduce a non-viral, ligand-mediated protein delivery system capable of selectively targeting primary skin cells in-vivo. Using orthologous self-labelling tags and chemical cross-linkers, we conjugate large proteins to ligands that bind their natural receptors on the surface of keratinocytes. Targeted CRE-mediated recombination was achieved by delivery of ligand cross-linked CRE protein to the skin of transgenic reporter mice, but was absent in mice lacking the ligand's cell surface receptor. We further show that ligands mediate the intracellular delivery of Cas9 allowing for CRISPR-mediated gene editing in the skin more efficiently than adeno-associated viral gene delivery. Thus, a ligand-based system enables the effective and receptor-specific delivery of large proteins and may be applied to the treatment of skin-related genetic diseases.


Assuntos
Proteínas/genética , Proteínas/metabolismo , Animais , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Dependovirus/genética , Edição de Genes/métodos , Técnicas de Transferência de Genes , Terapia Genética/métodos , Queratinócitos/metabolismo , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pele/metabolismo
8.
Pain ; 160(10): 2305-2315, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31365468

RESUMO

Nerve growth factor (NGF) and its receptors TrkA and p75 play a key role in the development and function of peripheral nociceptive neurons. Here, we describe novel technology to selectively photoablate TrkA-positive nociceptors through delivery of a phototoxic agent coupled to an engineered NGF ligand and subsequent near-infrared illumination. We demonstrate that this approach allows for on demand and localized reversal of pain behaviors in mouse models of acute, inflammatory, neuropathic, and joint pain. To target peripheral nociceptors, we generated a SNAP-tagged NGF derivative NGF that binds to TrkA/p75 receptors but does not provoke signaling in TrkA-positive cells or elicit pain behaviors in mice. NGF was coupled to the photosensitizer IRDye700DX phthalocyanine (IR700) and injected subcutaneously. After near-infrared illumination of the injected area, behavioral responses to nociceptive mechanical and sustained thermal stimuli, but not innocuous stimuli, were substantially reduced. Similarly, in models of inflammatory, osteoarthritic, and neuropathic pain, mechanical hypersensitivity was abolished for 3 weeks after a single treatment regime. We demonstrate that this loss of pain behavior coincides with the retraction of neurons from the skin which then reinnervate the epidermis after 3 weeks corresponding with the return of mechanical hypersensitivity. Thus NGF-mediated photoablation is a minimally invasive approach to reversibly silence nociceptor input from the periphery, and control pain and hypersensitivity to mechanical stimuli.


Assuntos
Técnicas de Ablação/métodos , Fator de Crescimento Neural/administração & dosagem , Neuralgia/terapia , Nociceptores/efeitos dos fármacos , Medição da Dor/métodos , Fármacos Fotossensibilizantes/administração & dosagem , Animais , Células CHO , Cricetinae , Cricetulus , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neuralgia/fisiopatologia , Nociceptores/fisiologia , Células PC12 , Ratos
9.
Nat Biomed Eng ; 3(2): 114-125, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30944432

RESUMO

Itch-a major symptom of many chronic skin diseases-can exacerbate inflammation by provoking scratching and subsequent skin damage. Here, we show that activation, via near infrared illumination, of a phototoxic agent that selectively targets itch-sensing cells can reduce itch-associated behaviours in mice. We generated a SNAP-tagged interleukin-31 (IL-31) ligand derivative (IL-31K138A-SNAP) that selectively binds receptors on itch-associated cells, without evoking IL-31-receptor signalling or scratching, and conjugated it to the photosensitizer IRDye 700DX phthalocyanine. Subcutaneous injection of IL-31K138A-SNAP-IR700 in mice followed by near infrared illumination resulted in the long-term reversal of the scratching behaviour evoked by the pruritogenic IL-31, an effect that was associated with the selective retraction of itch-sensing neurons in the skin. We also show that a topical preparation of IL-31K138A-SNAP-IR700 reversed the behavioural and dermatological indicators of disease in mouse models of atopic dermatitis and of the genetic skin disease familial primary localized cutaneous amyloidosis. Targeted photoablation may enable itch control for the treatment of inflammatory skin diseases.


Assuntos
Comportamento Animal , Epiderme/inervação , Interleucinas/uso terapêutico , Luz , Prurido/patologia , Prurido/terapia , Células Receptoras Sensoriais/patologia , Doença Aguda , Amiloidose Familiar/patologia , Animais , Movimento Celular , Células Dendríticas/patologia , Dermatite Atópica/patologia , Dermatite Atópica/prevenção & controle , Modelos Animais de Doenças , Epiderme/patologia , Indóis/química , Queratinócitos/patologia , Camundongos Endogâmicos C57BL , Psoríase/patologia , Dermatopatias Genéticas/patologia
10.
Nat Commun ; 9(1): 1640, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29691410

RESUMO

Mechanical allodynia is a major symptom of neuropathic pain whereby innocuous touch evokes severe pain. Here we identify a population of peripheral sensory neurons expressing TrkB that are both necessary and sufficient for producing pain from light touch after nerve injury in mice. Mice in which TrkB-Cre-expressing neurons are ablated are less sensitive to the lightest touch under basal conditions, and fail to develop mechanical allodynia in a model of neuropathic pain. Moreover, selective optogenetic activation of these neurons after nerve injury evokes marked nociceptive behavior. Using a phototherapeutic approach based upon BDNF, the ligand for TrkB, we perform molecule-guided laser ablation of these neurons and achieve long-term retraction of TrkB-positive neurons from the skin and pronounced reversal of mechanical allodynia across multiple types of neuropathic pain. Thus we identify the peripheral neurons which transmit pain from light touch and uncover a novel pharmacological strategy for its treatment.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Hiperalgesia/terapia , Terapia a Laser , Glicoproteínas de Membrana/metabolismo , Neuralgia/metabolismo , Neuralgia/terapia , Proteínas Tirosina Quinases/metabolismo , Células Receptoras Sensoriais/efeitos da radiação , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Feminino , Humanos , Hiperalgesia/genética , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatologia , Ligantes , Masculino , Glicoproteínas de Membrana/genética , Camundongos , Neuralgia/genética , Neuralgia/fisiopatologia , Proteínas Tirosina Quinases/genética , Células Receptoras Sensoriais/metabolismo , Tato/efeitos da radiação
11.
EMBO Rep ; 17(4): 585-600, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26929027

RESUMO

Itch, the unpleasant sensation that elicits a desire to scratch, is mediated by specific subtypes of cutaneous sensory neuron. Here, we identify a subpopulation of itch-sensing neurons based on their expression of the receptor tyrosine kinase Ret. We apply flow cytometry to isolate Ret-positive neurons from dorsal root ganglia and detected a distinct population marked by low levels of Ret and absence of isolectin B4 binding. We determine the transcriptional profile of these neurons and demonstrate that they express neuropeptides such as somatostatin (Sst), the NGF receptor TrkA, and multiple transcripts associated with itch. We validate the selective expression of Sst using an Sst-Cre driver line and ablated these neurons by generating mice in which the diphtheria toxin receptor is conditionally expressed from the sensory neuron-specific Avil locus. Sst-Cre::Avil(iDTR) mice display normal nociceptive responses to thermal and mechanical stimuli. However, scratching behavior evoked by interleukin-31 (IL-31) or agonist at the 5HT1F receptor is significantly reduced. Our data provide a molecular signature for a subpopulation of neurons activated by multiple pruritogens.


Assuntos
Gânglios Espinais/metabolismo , Proteínas Proto-Oncogênicas c-ret/genética , Prurido/genética , Células Receptoras Sensoriais/metabolismo , Somatostatina/genética , Animais , Perfilação da Expressão Gênica , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/genética , Hibridização In Situ , Lectinas/metabolismo , Camundongos , Proteínas dos Microfilamentos/genética , Neurônios Aferentes/metabolismo , Neuropeptídeos/metabolismo , Receptor de Fator de Crescimento Neural/genética
12.
J Physiol ; 594(16): 4549-64, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-26592729

RESUMO

KEY POINTS: Remarkably little is known about how age affects the sensory signalling pathways in the gastrointestinal tract despite age-related gastrointestinal dysfunction being a prime cause of morbidity amongst the elderly population High-threshold gastrointestinal sensory nerves play a key role in signalling distressing information from the gut to the brain. We found that ageing is associated with attenuated high-threshold afferent mechanosensitivity in the murine colon, and associated loss of TRPV1 channel function. These units have the capacity to sensitise in response to injurious events, and their loss in ageing may predispose the elderly to lower awareness of GI injury or disease. ABSTRACT: Ageing has a profound effect upon gastrointestinal function through mechanisms that are poorly understood. Here we investigated the effect of age upon gastrointestinal sensory signalling pathways in order to address the mechanisms underlying these changes. In vitro mouse colonic and jejunal preparations with attached splanchnic and mesenteric nerves were used to study mechanosensory and chemosensory afferent function in 3-, 12- and 24-month-old C57BL/6 animals. Quantitative RT-PCR was used to investigate mRNA expression in colonic tissue and dorsal root ganglion (DRG) cells isolated from 3- and 24-month animals, and immunohistochemistry was used to quantify the number of 5-HT-expressing enterochromaffin (EC) cells. Colonic and jejunal afferent mechanosensory function was attenuated with age and these effects appeared earlier in the colon compared to the jejunum. Colonic age-related loss of mechanosensory function was more pronounced in high-threshold afferents compared to low-threshold afferents. Chemosensory function was attenuated in the 24-month colon, affecting TRPV1 and serotonergic signalling pathways. High-threshold mechanosensory afferent fibres and small-diameter DRG neurons possessed lower functional TRPV1 receptor responses, which occurred without a change in TRPV1 mRNA expression. Serotonergic signalling was attenuated at 24 months, but TPH1 and TPH2 mRNA expression was elevated in colonic tissue. In conclusion, we saw an age-associated decrease in afferent mechanosensitivity in the mouse colon affecting HT units. These units have the capacity to sensitise in response to injurious events, and their loss in ageing may predispose the elderly to lower awareness of GI injury or disease.


Assuntos
Envelhecimento/fisiologia , Colo/fisiologia , Sensação/fisiologia , Animais , Colo/inervação , Gânglios Espinais/fisiologia , Jejuno/inervação , Jejuno/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , RNA Mensageiro/metabolismo , Canais de Cátion TRPV/genética , Triptofano Hidroxilase/genética
13.
Lung Cancer ; 90(3): 457-64, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26431916

RESUMO

OBJECTIVES: Malignant mesothelioma (MM) is a highly aggressive tumor with poor prognosis. A major challenge is the development and application of early and highly reliable diagnostic marker(s). Serum biomarkers, such as 'soluble mesothelin-related proteins' (SMRPs), is the most studied and frequently used in MM. However, the low sensitivity of SMRPs for early MM limits its value; therefore, additional biomarkers are required. In this study, two epigenetically regulated markers in MM (microRNA-126, miR-126, and methylated thrombomodulin promoter, Met-TM) were combined with SMRPs and evaluated as a potential strategy to detect MM at an early stage. MATERIALS AND METHODS: A total of 188 subjects, including 45 MM patients, 99 asbestos-exposed subjects, and 44 healthy controls were prospectively enrolled, serum samples collected, and serum levels of SMRPs, miR-126 and Met-TM evaluated. Logistic regression analysis was performed to evaluate the diagnostic value of the three biomarkers. Using this approach, the performance of the '3-biomarker classifier' was tested by calculating the overall probability score of the MM and control samples, respectively, and the ROC curve was generated. RESULTS AND CONCLUSION: The combination of the three biomarkers was the best predictor to differentiate MM patients from asbestos-exposed subjects and healthy controls. The accuracy and cancer specificity was confirmed in a second validation cohort and lung cancer population. We propose that the combination of the two epigenetic biomarkers with SMRPs as a diagnosis for early MM overcomes the limitations of using SMRPs alone.


Assuntos
Biomarcadores Tumorais , Epigênese Genética , Proteínas Ligadas por GPI/genética , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Mesotelioma/diagnóstico , Mesotelioma/genética , Idoso , Metilação de DNA , Feminino , Proteínas Ligadas por GPI/sangue , Humanos , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/terapia , Masculino , Mesotelina , Mesotelioma/sangue , Mesotelioma/etiologia , Mesotelioma/terapia , Mesotelioma Maligno , MicroRNAs/sangue , MicroRNAs/genética , Pessoa de Meia-Idade , Proteínas Associadas à Resistência a Múltiplos Medicamentos/sangue , Prognóstico , Reprodutibilidade dos Testes
14.
Mutagenesis ; 30(4): 487-97, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25711499

RESUMO

A high risk of neoplastic transformation of nasal and paranasal sinuses mucosa is related to the occupational exposure to wood dust. However, the role of occupational exposures in the aetiology of the airway cancers remains largely unknown. Here, an in vitro model was performed to investigate the carcinogenic effect of wood dusts. Human bronchial epithelial cells were incubated with hard and soft wood dusts and the DNA damage and response to DNA damage evaluated. Wood dust exposure induced accumulation of oxidised DNA bases, which was associated with a delay in DNA repair activity. By exposing cells to wood dust at a prolonged time, wood dust-initiated cells were obtained. Initiated-cells were able to form colonies in soft agar, and to induce blood vessel formation. These cells showed extensive autophagy, reduced DNA repair, which was associated with reduced OGG1 expression and oxidised DNA base accumulation. These events were found related to the activation of EGFR/AKT/mTOR pathway, through phosphorylation and subsequent inactivation of tuberin. The persistence in the tissue of wood dusts, their repetitious binding with EGFR may continually trigger the activation switch, leading to chronic down-regulation of genes involved in DNA repair, leading to cell transformation and proliferation.


Assuntos
Brônquios/patologia , Transformação Celular Neoplásica/patologia , DNA Glicosilases/antagonistas & inibidores , Poeira , Células Epiteliais/patologia , Receptores ErbB/metabolismo , Exposição Ocupacional/efeitos adversos , Madeira/química , Apoptose , Western Blotting , Brônquios/metabolismo , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Células Cultivadas , DNA Glicosilases/genética , DNA Glicosilases/metabolismo , Células Epiteliais/metabolismo , Receptores ErbB/genética , Humanos , Técnicas Imunoenzimáticas , Neovascularização Fisiológica , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
15.
Aging Cell ; 13(3): 540-50, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24593692

RESUMO

The incidence of bladder conditions such as overactive bladder syndrome and its associated urinary incontinence is highly prevalent in the elderly. However, the mechanisms underlying these disorders are unclear. Studies suggest that the urothelium forms a 'sensory network' with the underlying innervation, alterations in which, could compromise bladder function. As the accumulation of reactive oxygen species can cause functional alterations with age, the aim of this study was to investigate whether oxidative stress alters urothelial sensory signalling and whether the mechanism underlying the effect of oxidative stress on the urothelium plays a role in aging. Five-month-old(young) and 24-month-old (aged) mice were used. H2O2 , used to induce oxidative stress, resulted in an increase in bladder afferent nerve activity and urothelial intracellular calcium in preparations from young mice. These functional changes were concurrent with upregulation of TRPM8 in the urothelium. Moreover, application of a TRPM8 antagonist significantly attenuated the H2O2 -induced calcium responses. Interestingly, an upregulation of TRPM8 was also found in the urothelium from aged mice, where high oxidative stress levels were observed, together with a greater calcium response to the TRPM8 agonist WS12. Furthermore, these calcium responses were attenuated by pretreatment with the antioxidant N-acetyl-cysteine. This study shows that oxidative stress affects urothelial function involving a TRPM8-mediated mechanism and these effects may have important implications for aging. These data provide an insight into the possible mechanisms by which oxidative stress causes physiological alterations in the bladder, which may also occur in other organs susceptible to aging.


Assuntos
Envelhecimento/fisiologia , Estresse Oxidativo/fisiologia , Canais de Cátion TRPM/metabolismo , Urotélio/fisiologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima , Urotélio/citologia , Urotélio/metabolismo , Urotélio/patologia
16.
Antioxid Redox Signal ; 21(15): 2109-25, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-24444362

RESUMO

AIMS: MiR126 was found to be frequently lost in many types of cancer, including malignant mesothelioma (MM), which represents one of the most challenging neoplastic diseases. In this study, we investigated the potential tumor suppressor function of MiR126 in MM cells. The effect of MiR126 was examined in response to oxidative stress, aberrant mitochondrial function induced by inhibition of complex I, mitochondrial DNA (mtDNA) depletion, and hypoxia. RESULTS: MiR126 was up-regulated by oxidative stress in nonmalignant mesothelial (Met5A) and MM (H28) cell lines. In Met5A cells, rotenone inhibited MiR126 expression, but mtDNA depletion and hypoxia up-regulated MiR126. However, these various stimuli suppressed the levels of MiR126 in H28 cells. MiR126 affected mitochondrial energy metabolism, reduced mitochondrial respiration, and promoted glycolysis in H28 cells. This metabolic shift, associated with insulin receptor substrate-1 (IRS1)-modulated ATP-citrate lyase deregulation, resulted in higher ATP and citrate production. These changes were linked to the down-regulation of IRS1 by ectopic MiR126, reducing Akt signaling and inhibiting cytosolic sequestration of Forkhead box O1 (FoxO1), which promoted the expression of genes involved in gluconeogenesis and oxidative stress defense. These metabolic changes induced hypoxia-inducible factor-1α (HIF1α) stabilization. Consequently, MiR126 suppressed the malignancy of MM cells in vitro, a notion corroborated by the failure of H28(MiR126) cells to form tumors in nude mice. INNOVATION AND CONCLUSION: MiR126 affects mitochondrial energy metabolism, resulting in MM tumor suppression. Since MM is a fatal neoplastic disease with a few therapeutic options, this finding is of potential translational importance.


Assuntos
Proteínas Substratos do Receptor de Insulina/genética , Neoplasias Pulmonares/genética , Mesotelioma/genética , MicroRNAs/genética , Mitocôndrias/metabolismo , Animais , Hipóxia Celular , Linhagem Celular Tumoral , Proliferação de Células , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/metabolismo , Regulação Neoplásica da Expressão Gênica , Glicólise , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Neoplasias Pulmonares/patologia , Mesotelioma/patologia , Mesotelioma Maligno , Camundongos Nus , Transplante de Neoplasias , Estresse Oxidativo , Consumo de Oxigênio , Interferência de RNA , Transdução de Sinais
17.
J Physiol ; 592(3): 537-49, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24297847

RESUMO

The prevalence of lower urinary tract storage disorders such as overactive bladder syndrome and urinary incontinence significantly increase with age. Previous studies have demonstrated age-related changes in detrusor function and urothelial transmitter release but few studies have investigated how the urothelium and sensory pathways are affected. The aim of this study was to investigate the effect of ageing on urothelial-afferent signalling in the mouse bladder. Three-month-old control and 24-month-old aged male mice were used. In vivo natural voiding behaviour, sensory nerve activity, urothelial cell function, muscle contractility, transmitter release and gene and protein expression were measured to identify how all three components of the bladder (neural, contractile and urothelial) are affected by ageing. In aged mice, increased voiding frequency and enhanced low threshold afferent nerve activity was observed, suggesting that ageing induces overactivity and hypersensitivity of the bladder. These changes were concurrent with altered ATP and acetylcholine bioavailability, measured as transmitter overflow into the lumen, increased purinergic receptor sensitivity and raised P2X3 receptor expression in the urothelium. Taken together, these data suggest that ageing results in aberrant urothelial function, increased afferent mechanosensitivity, increased smooth muscle contractility, and changes in gene and protein expression (including of P2X3). These data are consistent with the hypothesis that ageing evokes changes in purinergic signalling from the bladder, and further studies are now required to fully validate this idea.


Assuntos
Envelhecimento , Bexiga Urinária/fisiologia , Urotélio/fisiologia , Acetilcolina/metabolismo , Trifosfato de Adenosina/metabolismo , Vias Aferentes/crescimento & desenvolvimento , Vias Aferentes/fisiologia , Animais , Masculino , Camundongos , Contração Muscular , Receptores Purinérgicos P2X/genética , Receptores Purinérgicos P2X/metabolismo , Limiar Sensorial , Bexiga Urinária/crescimento & desenvolvimento , Bexiga Urinária/inervação , Micção , Urotélio/crescimento & desenvolvimento , Urotélio/metabolismo
19.
PLoS One ; 7(12): e52263, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23272231

RESUMO

BACKGROUND: The redox-silent vitamin E analog α-tocopheryl succinate (α-TOS) was found to synergistically cooperate with vitamin K3 (VK3) plus ascorbic acid (AA) in the induction of cancer cell-selective apoptosis via a caspase-independent pathway. Here we investigated the molecular mechanism(s) underlying cell death induced in prostate cancer cells by α-TOS, VK3 and AA, and the potential use of targeted drug combination in the treatment of prostate cancer. METHODOLOGY/PRINCIPAL FINDINGS: The generation of ROS, cellular response to oxidative stress, and autophagy were investigated in PC3 prostate cancer cells by using drugs at sub-toxic doses. We evaluated whether PARP1-mediated apoptosis-inducing factor (AIF) release plays a role in apoptosis induced by the combination of the agents. Next, the effect of the combination of α-TOS, VK3 and AA on tumor growth was examined in nude mice. VK3 plus AA induced early ROS formation associated with induction of autophagy in response to oxidative stress, which was reduced by α-TOS, preventing the formation of autophagosomes. α-TOS induced mitochondrial destabilization leading to the release of AIF. Translocation of AIF from mitochondria to the nucleus, a result of the combinatorial treatment, was mediated by PARP1 activation. The inhibition of AIF as well as of PARP1 efficiently attenuated apoptosis triggered by the drug combination. Using a mouse model of prostate cancer, the combination of α-TOS, VK3 and AA was more efficient in tumor suppression than when the drugs were given separately, without deleterious side effects. CONCLUSIONS/SIGNIFICANCE: α-TOS, a mitochondria-targeting apoptotic agent, switches at sub-apoptotic doses from autophagy-dependent survival of cancer cells to their demise by promoting the induction of apoptosis. Given the grim prognosis for cancer patients, this finding is of potential clinical relevance.


Assuntos
Ácido Ascórbico/farmacologia , Autofagia/efeitos dos fármacos , Neoplasias da Próstata/metabolismo , Succinatos/farmacologia , Vitamina K 3/farmacologia , Animais , Fator de Indução de Apoptose/metabolismo , Ácido Ascórbico/administração & dosagem , Caspases/metabolismo , Linhagem Celular Tumoral , Progressão da Doença , Humanos , Masculino , Camundongos , Poli(ADP-Ribose) Polimerases/metabolismo , Neoplasias da Próstata/genética , Transporte Proteico , Espécies Reativas de Oxigênio/metabolismo , Succinatos/administração & dosagem , Vitamina K 3/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Clin Biochem ; 45(7-8): 575-81, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22374169

RESUMO

OBJECTIVES: Aim of this study was to evaluate the accuracy and precision of the detection of individual miRNA as clinical biomarkers in the serum. DESIGN AND METHODS: miRNA-126 was quantified in serum using endogenous and exogenous controls for normalization and the accuracy and precision of the method evaluated. The diagnostic value of serum miRNA-126 was evaluated in malignant mesothelioma (MM) and non-small-cell lung cancer (NSCLC) patients using both relative and absolute qRT-PCR methods. RESULTS: The use of endogenous invariant and exogenous synthetic controls as well sample dilution markedly improves the accuracy and precision of the assay. The inter- and intra-assay analyses revealed that relative qRT-PCR is a more reliable method. Circulating miR-126 detected in the serum by relative qRT-PCRs was found low-expressed in both malignancies, significantly differentiated MM patients from healthy controls and NSCLC from MM, but do not discriminate NSCLC patients from control subjects. Kaplan-Meier analysis revealed that low level of circulating miR-126 in MM patients was strongly associated with worse prognosis. CONCLUSIONS: We propose that this approach can be adopted for accurate analysis of other suitable circulating miRNA markers of different types of cancer.


Assuntos
Mesotelioma/diagnóstico , MicroRNAs/sangue , Idoso , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/sangue , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/genética , Estudos de Casos e Controles , Feminino , Humanos , Estimativa de Kaplan-Meier , Masculino , Mesotelioma/sangue , Mesotelioma/genética , MicroRNAs/análise , Pessoa de Meia-Idade , Prognóstico , Padrões de Referência , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...